
Grade 7/8 Math Circles

November 6/7/8/9

Geometric Sequences

Squares in Rectangles in Squares in...

We’ll begin with an activity and look out for some patterns.

Exercise 1

(i) Begin by drawing a square with side lengths of 1 unit.

1

1

What is the area of the square?

(ii) Now, divide your square into half so you have two equal rectangles. Shade in one of the

halves.

1

1

What is the area of each half? What is the area of the shaded region?

(iii) Again, divide the unshaded rectangle into two halves. Shade in one of these new halves.

1

1

What is the area of each half? What is the total area of all the shaded regions?
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Exercise 1 Continued

(iv) Repeat step (iii) two more times, each time dividing the unshaded region into two, finding

the area of each new half, and the total area of the shaded regions.

(v) What patterns do you notice as you’re finding the areas? Without actually drawing the

rectangles, can you predict what the area of each new half will be after we divide the

square 6 times? 10 times?

What about the shaded regions? Can you predict what the total area of the shaded regions

will be after we divide the square 6 times? 10 times?

Recall

Before we examine the solutions, let’s quickly review exponents. Just like multiplication repre-

sents repeated addition, that is

2× 4 = 2 + 2 + 2 + 2

we have that exponents represent repeated multiplication:

24 = 2× 2× 2× 2

Exercise 2

Calculate the following exponents: 34, 26, and
(
1
2

)3
. Note that

(
1
2

)3
= 1

23

Solution

(i) The area of the square is

Area = length× width = 1× 1 = 1

(ii) Since we divided the square into halves, each rectangle has width of 1
2
, so

Area of half = Area of shaded =
1

2
× 1 =

1

2
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(iii) Now, the length is half of what it was before, so we have

Area of half =
1

2
× 1

2
=

1

4

Area of shaded =
1

2
+

1

4
=

3

4
(iv) The next two divisions should look similar to this

1

1

1

1

The left square has areas

Area of half =
1

8
Area of shaded =

7

8

and the right square has areas

Area of half =
1

16
Area of shaded =

15

16

(v) One might notice that at each step, we divide the previous Area of half by 2 (or multiply

it by 1
2
) and that Area of shaded = 1− Area of half .

Repeatedly multiplying by 1
2
can be represented using exponents; if we multiply by 1

2
three

times, we have
(
1
2

)3
= 1

8
, which is exactly what we got after 3 divisions. We can use this

to predict the areas.

After dividing the square 6 times, we should have

Area of half =

(
1

2

)6

=
1

64

and after 10 times,

Area of half =

(
1

2

)10

=
1

1024

This is a tiny number! We would not want to try and divide the square 10 times to find

this number. Using these numbers, we can find the areas of the shaded regions after 6
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times

Area of shaded = 1− Area of half = 1− 1

64
=

63

64

and after 10 times

Area of shaded = 1− Area of half = 1− 1

1024
=

1023

1024

Note that in the formulas above, we always know that the

Area of half =

(
1

2

)n

where n is the number of times we divide the circle. Then, since Area of shaded = 1−Area of half,

we can write

Area of shaded = 1−
(
1

2

)n

Now we can find the area of the shaded regions without needing to calculate the area of each half

first!

Sequences

A sequence is an ordered list of numbers. For example, the sequence of integers from 1 to 10 is

written as {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Each number in the sequence is called a term. Terms in our

sequence are separated by commas.

A sequence is either finite or infinite. A finite sequence will eventually end, like the one above, but

an infinite sequence goes on forever. For example, the sequence of odd numbers

{1, 3, 5, 7, 9, 11, ...}

is an infinite sequence. We use an ellipsis (...) to show that we are omitting information, since it’s

impossible to write down every term in an infinite sequence.

To refer to a specific term of the sequence, we use tn, with the subscript n representing the nth term

in the sequence. For example, t1 represents the first term in a sequence.
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Exercise 3

Identify t2, t5, and t8 in the infinite sequence below:

{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, ...}

Geometric Sequences

You may have noticed a pattern in the sequence from Exercise 2, to get to the next term, we just

multiply the previous term by 2. This value is called the common ratio.

A geometric sequence is a sequence that has a common ratio, meaning that if you take any term

in the sequence and multiply it by the common ratio, you will get the next term in the sequence. The

common ratio can be any number. For example, it could be a positive number, a negative number,

a fraction, etc.

Exercise 4

Identify the geometric sequences from the list below. For any sequence that is geometric, also

state the common ratio.

(i)
{

1
2
, 1, 2, 4

}
(ii) {5, 10, 15, 20, 25, ...}

(iii) {1, 5, 1, 5, 1, 5, 1, 5, ...}

(iv) {3, 9, 27, 81}

(v)
{

1
2
, 1
4
, 1
8
, 1
16
, 1
32
, ...

}
Does the last sequence in Exercise 3 look familiar? It is exactly the values that we got for the areas

of the rectangles in Example 1 each time that we divided the rectangle into halves. So dividing areas

forms geometric sequences!

Sums and Series

One thing that we can do with sequences in general (not just geometric sequences!) is add up some

or all of the terms in the sequence. This is called a series. The result that you get after adding up
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the terms is called the sum. For example, for the sequence {1, 2, 3, 4, 5}. The series of this sequence

is

1 + 2 + 3 + 4 + 5

and the sum is 15 since

1 + 2 + 3 + 4 + 5 = 15

Note that a series can be either finite or infinite, just like a sequence.

Exercise 5

For each sequence in Exercise 3, write out its series and find the sum. Since we cannot add

together an infinite series by ourselves, if the sequence is infinite, find the sum of the first 5

terms.

If our sequence is a geometric sequence, then we call its series a geometric series.

Example 1

Recall the sequence for the area of the rectangles in Exercise 1:{
1

2
,
1

4
,
1

8
,
1

16
,
1

32
, ...

}
We saw that this is a geometric sequence with common ratio 1

2
. To calculate the sum of the

first 5 terms, we can do it by hand, as in Exercise 1,

1

2
+

1

4
+

1

8
+

1

16
+

1

32
=

31

32

or we can use the formula that we found, Area of shaded = 1−
(
1
2

)n
, with n = 5 as follows:

1−
(
1

2

)5

= 1− 1

32
=

31

32

and notice that we get the same sum!

We really like working with finite geometric series because there is a formula that we can use that
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will find the sum for us. The formula is:

a× (1− rn)÷ (1− r)

where a is the first term in the sequence, r is the common ratio, and n is the number of terms in our

sum.

Example 2

Consider the geometric sequence

{1, 2, 4, 8, 16, 32}

We have that the first term is 1, so a = 1. The common ratio is 2, so r = 2. The number of

terms is 6, so n = 6. Using our formula for a geometric sum, we get

a× (1− rn)÷ (1− r) = 1×
(
1− 26

)
÷ (1− 2)

= 1× (1− 64)÷ (1− 2)

= 1× (−63)÷ (−1)

= 63

We can verify that our formula is correct by adding

1 + 2 + 4 + 8 + 16 + 32 = 63

Exercise 6

For the geometric sequence

{2, 6, 18, 54}

find a, r, and n. Write out the it’s series and find its sum using the formula for the sum of a

geometric series.

Additionally, for each geometric sequence in Exercise 4, verify that our formula gives us the

same sum as the sums you found in Exercise 5.
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Notice that this formula looks very different than the one used in our Example 1. That is, for the

geometric sequence {
1

2
,
1

4
,
1

8
,
1

16
,
1

32
, ...

}
we had that the formula for the sum of its geometric series was

1−
(
1

2

)n

However, it turns out that, with the help of some algebra, one can show that

1−
(
1

2

)n

= a× (1− rn)÷ (1− r)

where a = 1
2
and r = 1

2
.

Exercise 7

By trying different values of n, verify that the two formulas above give the same sums.

Infinite Series

Up until now, whenever our sequence has been infinite, we never find the sum of its series. Instead,

we’ve only found the sum of the first n terms. But what if we want to know what happens when we

add together an infinite number of terms?

In the formula for the sum of a geometric series, we have the term rn. This term is very important

for whether or not we can find the sum of an infinite geometric series.

Stop and Think

What happens to 2n as n gets bigger and bigger?

Hopefully, you noticed that each time we increase n, the value of 2n gets much larger. In fact, 2n

can get so large that we are no longer able handle the numbers. Further, this happens any time that

r ≥ 1. Because of this, we are unable to calculate the sum of a geometric series when r ≥ 1.
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Stop and Think

What happens to
(
1
2

)n
as n gets bigger and bigger? Think about what happened to the area of

the rectangles in Exercise 1 each time that we divided them into halves.

If we were to keep dividing the rectangles in Exercise 1 into halves, they would eventually become so

small that we cannot even see them, let alone draw them. In fact, if we were to divide the rectangles

20 times, then each half would have an area of(
1

2

)20

= 0.00000095367431641

This is so small that we can basically pretend that it is 0. In fact, if we want n to be arbitrarily

large, then it really is 0, not just pretend! So for arbitrarily large n,
(
1
2

)n
= 0. Now, lets finally try

to find the series of our geometric sequence{
1

2
,
1

4
,
1

8
,
1

16
,
1

32
, ...

}
Using our formula from before with a = 1

2
, r = 1

2
, and n being arbitrarily large, we have

a× (1− rn)÷ (1− r) =
1

2
×

(
1−

(
1

2

)n)
÷
(
1− 1

2

)
=

1

2
× (1− 0)÷

(
1− 1

2

)
=

1

2
× 1÷ 1

2

= 1

We’ve successfully added together an infinite number of terms and finally found the sum of an infinite

geometric series! In fact, this works any time that r < 1. That is, when we have r < 1, we can find

the sum of the infinite geometric series.

What is 0.99999999...?

When working with fractions and decimals, you have likely came across fractions that have infinite

decimal representations. For example,
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1

3
= 0.3̇ = 0.333333...

A particular infinite decimal that gets a lot of attention is 0.9̇ = 0.999999....

Stop and Think

If we were to represent 0.9̇ as a whole number or fraction, what should this number be? Why

do you think this?

Exercise 8

What are the decimal representations of the following fractions?

1. 9
10

2. 9
100

3. 9
1000

4. 9
10000

We should have gotten 9
10

= 0.9, 9
100

= 0.09, 9
1000

= 0.009, and 9
10000

= 0.0009. Notice what happens

when we add together these fractions:

9

10
+

9

100
+

9

1000
+

9

10000
= 0.9 + 0.09 + 0.009 + 0.0009 = 0.9999

Notice that this is a geometric sequence with common ratio 1
10
! Let’s return our attention back to

0.9̇. Notice the following:

0.9̄ = 0.999999... = 0.9 + 0.09 + 0.009 + 0.0009 + 0.00009 + 0.000009 + · · ·

=
9

10
+

9

100
+

9

1000
+

9

10000
+

9

100000
+

9

1000000
+ · · ·

So we’ve turned our infinite decimal into a geometric series with common ratio 1
10
. Since the common

ratio is less than 1, we know exactly how to deal with this! We’ll use our formula for geometric series

with a = 9
10
, r = 1

10
, and let n be arbitrarily large to get
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a× (1− rn)÷ (1− r) =
9

10
×
(
1−

(
1

10

)n)
÷
(
1− 1

10

)
=

9

10
× (1− 0)÷

(
1− 1

10

)
=

9

10
× 1÷ 9

10

= 1

So we have that 0.9̇ = 0.999999... = 1, very interesting!
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